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Abstract

We study the semiclassical partition function in the frame work of the Morse theory, to clarify the
phase factor of the partition function and to relate it to the eta invariant of Atiyah. Converting physical
system with potential into a curved manifold, we exploit the Jacobi fields and their corresponding
eigenvalues of the Sturm–Liouville operator to be associated with geodesics on the curved manifold
and with the Hamilton–Jacobi theory.
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1. Introduction

Nowadays there have been considerable discussions concerning the topological invariants
such as the Euler characteristics, the Hopf invariant in mathematical physics. Moreover, the
eta invariant of Atiyah et al.[1,2] has been studied in quantum field theory associated with
the Jones polynomial and knot theory[2] and even in hadron physics such as the chiral
bag model[3]. Recently, the Yamabe invariant[4,5] is also investigated in general relativity
associated with the topology of boundary surface of black holes with nontrivial higher
genus.

On the other hand, since Feynman[6] proposed the path integral formalism, there have
been tremendous developments in quantum field theory, and the partition functions in the
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path integral formalism have become crucial in investigating many aspects of recent theo-
retical physics. Moreover, the supersymmetric quantum mechanics has been exploited by
Witten [7] to discuss the Morse inequalities[8–10]. The Morse indices for pair of critical
points of the symplectic action function have been also investigated based on the spectral
flow of the Hessian of the symplectic function[11], and on the Hilbert spaces the Morse
homology has been considered to discuss the critical points associated with the Morse index
[12]. Recently, the semiclassical partition function has been derived in the Chern–Simons
gauge theory exploiting the invariant integration scheme[13]. Even though Morette studied
the partition functions semiclassically long ago, her expression for its phase factor still
remains unclear to possess somehow subtleties[14].

In this paper we reformulate the semiclassical partition function in the frame work of the
Morse theory[8–10], to clarify the phase factor of the partition function and to relate it to
the eta invariant of Atiyah et al.[1,2]. To do this, we will convert the physical system with
potential into a curved manifold, on which we will use the Jacobi fields and their eigenvalues
of the Sturm–Liouville operator associated with the geodesics on the curved manifold and
with the Hamilton–Jacobi theory.

In Section 2, we will consider the Morse theory on the manifold constructed via the po-
tential of a conservative physical system, to discuss the eta invariant of Atiyah involved in
the semiclassical partition function of the system. InSection 3, we will consider the Jacobi
equation to describe the semiclassical partition function in terms of the Van Vleck determi-
nant[15] by introducing a smooth one-parameter family of geodesics on the manifold.

2. Morse theory and eta invariant

In this section we consider a particle in a conservative physical system with constant
energy to relate the eta invariant with the Morse theory.

Proposition 2.1. Let E = T + V be the constant total energy for a particle of mass m
in a conservative physical system on a flat manifold with the Minkowski metricds2 =
−dt2 + δab dxa dxb, where T and V are the kinetic and potential energies, respectively, then
we have a curved manifold M defined as the four-metricds2 = −dt2 + gab dxa dxb with

gab = m(E − 2V)2

2(E − V)
δab, (2.1)

and on which the action of the particle is given by

S =
∫ τ2

τ1

dτ(gabv
avb)1/2 (2.2)

with the proper timeτ (τ1 ≤ τ ≤ τ2) and the vector fieldva = (∂/∂τ)a.

Proof. Define the kinetic energyT and potential energyV as

T = 1

2
mδij

dxi

dτ

dxj

dτ
, V = V(xi).
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SinceE = T + V , we can rewrite the LagrangianL = T − V as follows:

L =
[
m(E − 2V)2

2(E − V)
δij

dxi

dτ

dxj

dτ

]1/2

= (gijv
ivj)1/2,

wherevi = dxi/dτ and

gij = m(E − 2V)2

2(E − V)
δij .

The action is then given by

S =
∫ τ2

τ1

dτ L =
∫ τ2

τ1

dτ(gijv
ivj)1/2.

On the curved manifoldM with the above metricgij originated from the potential energy
V(xi), in the abstract index notation we arrive at the metric(2.1)and the action(2.2). �

Here one notes that, without loss of generality,V(xi) can be chosen to vanish at starting
point atτ1 and the metricgab in (2.1)does not have any singularities since its denominator
is positive definite. With the metricgab in mind, one can define a unique covariant derivative
∇a satisfying∇agbc = 0.

Proposition 2.2. In the stationary phase approximation where the absolute value of the
deviation vector|wa(τ)| is infinitesimally small, for a particle in a conservative physical
system, one can expand the action S around the geodesicC0

S = Scl + S(1)(wa)+ 1
2S

(2)(wa)+ · · · , (2.3)

whereScl is a classical action and the next order terms are given by

S(1)(wa) = −
∫ τ2

τ1

dτ wbva∇avb, (2.4)

S(2)(wa) =
∫ τ2

τ1

dτ gabw
aΛb

cw
c (2.5)

with the Sturm–Liouville operator given by

Λa
b = −δab

d2

dτ2
− Racbdv

cvd. (2.6)

Proof. Consider a smooth one-parameter family of curvesCα(τ), parameterized by a proper
time τ (τ1 ≤ τ ≤ τ2) such that for allα andp, q ∈ M, Cα(τ1) = p, Cα(τ2) = q, andC0 is
a geodesic, along which a tangent vector fieldva satisfies the geodesic equation

va∇av
i = d2xi

dτ2
+ Γ i

jk
dxj

dτ

dxk

dτ
= 0, (2.7)

where∇av
b = ∂av

b + Γ b
acv

c. LetΣ be a two-dimensional submanifold spanned by curves
Cα(τ) and we choose(τ, α) as coordinates ofΣ. The vector fieldsva = (∂/∂τ)a andwa =
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(∂/∂α)a are then the tangent to the family of curves and the deviation vector representing the
displacement to an infinitesimally nearby curve, respectively. Without loss of generality,wa

can be chosen orthogonal tova and vanishes at end-points to yield the boundary conditions,

wa(τ1) = wa(τ2) = 0. (2.8)

Sinceva andwa are coordinate vector fields, they commute to each other,

£vw
a = vb∇bw

a − wb∇bv
a = 0. (2.9)

In the stationary phase approximation where|wa| is infinitesimally small, one can expand
the action(2.2)around the geodesicC0 as in(2.3). For simplicity, we parameterize the curve
so that the Lagrangian can be given byL = (gabv

avb)1/2 = 1 along the geodesic without
loss of generality, since the action(2.2)is parameterization independent. The classical action
is then given byScl = S|α=0 and the next order terms are given as follows:

S(1)(wa) =
∫ τ2

τ1

dτ wa∇a(v
bvb)

1/2 =
∫ τ2

τ1

dτ vbw
a∇av

b = −
∫ τ2

τ1

dτ wbva∇avb,

S(2)(wa) = −
∫ τ2

τ1

dτ wc∇c(wbv
d∇dv

b)

= −
∫ τ2

τ1

dτ wcwb(∇cv
d∇dv

b + vd∇c∇dv
b)

= −
∫ τ2

τ1

dτ wb(v
c∇cw

d∇dv
b + wcvd∇d∇cv

b − Rbcdew
cvdve)

= −
∫ τ2

τ1

dτ gabw
a(vc∇c(v

d∇dw
b)+ Rbcdev

cvewd) =
∫ τ2

τ1

dτ gabw
aΛb

cw
c

with the Sturm–Liouville operatorΛa
b = −δab(d2/dτ2) − Racbdv

cvd . Here we have put the
conditionα = 0 at the end of the calculations ofS(1)(wa) andS(2)(wa) and we have
used(2.7)–(2.9)and the convention for the Riemann curvature tensor for any vector field
va [10]

(∇a∇b − ∇b∇a)v
c = −Rcabdv

d. � (2.10)

Proposition 2.3. In the stationary phase approximation where the absolute value of the
deviation vector|wa(τ)| is infinitesimally small, for a particle in a conservative physical
system, one can have a partition function of the form

Z(τ2, τ1) = eiScl

∫
D[wa(τ)] ei

∑
m,n cmna

man, (2.11)

where the deviation vectorwa(τ) is given in terms of superposition of an orthonormal basis
{uan(τ)} in the Hilbert space,

wa(τ) =
∞∑
n=1

anuan(τ), (2.12)
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and

cmn =
∫ τ2

τ1

dτ gabu
a
mΛ

b
cu

c
n = (um,Λun). (2.13)

Proof. Consider a partition function[16]

Z(τ2, τ1) =
∫
D[xi(τ)] eiS(xi), (2.14)

which, in the stationary phase approximation, contains a widely oscillatory integral[2,17,18]
and is thus given by contributions from the points of stationary phase. Here the stationary
points precisely construct the geodesic, along which the total energy is constant. Since the
aboveS(1)(wa) in (2.4)vanishes due to the geodesicequation (2.7), by inserting the action
S in (2.3) intoZ in (2.14), we obtain the partition function of the form

Z(τ2, τ1) = eiScl

∫
D[wa(τ)] eiS(2)(wa)/2. (2.15)

Define a scalar product

(w,w′) =
∫ τ2

τ1

dτ gabw
a(τ)w′b(τ) (2.16)

to transform the path space of the integral(2.15) into the Hilbert space which is an ex-
ternal product of two spaces: three-dimensional space of the physical system and the
infinite-dimensional Hilbert space of the continuous scalar functions on [τ1, τ2] vanish-
ing atτ1 andτ2. By choosing an orthonormal basis{uan(τ)} in this Hilbert space, we have
the deviation vectorwa(τ) in terms of superposition of{uan(τ)} as in(2.12)so that, together
with the scalar product(2.16), we can rewrite the action(2.5)as

S(2)(wa) =
∑
m,n

cmna
man (2.17)

with the cmn in (2.13). Inserting (2.17) into (2.15) we arrive at the partition function
(2.11). �

Proposition 2.4. In the stationary phase approximation where the absolute value of the
deviation vector|wa(τ)| is infinitesimally small, the partition function for a particle in a
conservative physical system can be rewritten as

Z(τ2, τ1) = J eiScl eiπ
∑

n signλn/4
∞∏
n=1

∣∣∣∣2πλn
∣∣∣∣
1/2

, (2.18)

where J is the Jacobian associated with the transformation from the deviation vectorwa(τ)

to the orthonormal basis{uan(τ)} in the Hilbert space, andλn are the eigenvalues of the
Sturm–Liouville operatorΛa

b = −δab(d2/dτ2)− Racbdv
cvd ,

−Λa
bu

b
n + λnu

a
n = 0 (2.19)

with the boundary conditions of the eigenfunction

uan(τ1) = uan(τ2) = 0. (2.20)
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Note that the phase factor is proportional to
∑

n signλn, which is associated with the eta
invariant of Atiyah et al.[1,2]

η = 1
2 lim
s→0

signλn|λn|−s. (2.21)

Proof. In order to diagonalize the matrixcmn in (2.13), we find an orthonormal basis of
eigenfunctions{uan(τ)} of the Sturm–Liouville operatorΛa

b with eigenvaluesλn via the
following eigenvalue equations in the Morse theory[8–10] in their component form:

−Λi
ju

j
n + λnu

i
n = d2uin

dτ2
+ Rikjlv

kvlujn + λnu
i
n = 0

with the boundary conditions of the eigenfunction originated from(2.8)

uin(τ1) = uin(τ2) = 0, i = 1,2,3.

With the above eigenvalues and eigenfunctions, we obtain

cmn = λm(um, un) = λmδmn

to yield

S(2)(wa) =
∑
n

λn(a
n)2

from which we rewrite the partition function(2.11)as follows:

Z(τ2, τ1) = J eiScl

∞∏
n=1

∫ ∞

−∞
dan eiλn(an)2/2.

HereJ is the Jacobian defined as

D[wa] = J

∞∏
n=1

dan,

and is independent ofwa(τ) due to the linearity of the transformation(2.12), so thatJ can
be brought out of the integral symbol.

By taking the vanishingε limit of the absolutely convergent integral, one can obtain

lim
ε→0

∫ ∞

−∞
dan eiλn(an)2/2 e−ε(an)2 = eiπ signλn/4

∣∣∣∣2πλn
∣∣∣∣
1/2

to arrive at the partition function(2.18). �

Proposition 2.5. In the stationary phase approximation where the absolute value of the
deviation vector|wa(τ)| is infinitesimally small, the partition function for a particle in a
conservative physical system can be rewritten as

Z(τ2, τ1) = J ei(Scl−Ŝcl) eiπ
∑

n(signλn−signλ̂n)/4

∣∣∣∣∣
∏

n λ̂n∏
n λn

∣∣∣∣∣
1/2

Ẑ(τ2, τ1), (2.22)
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whereλ̂n are the eigenvalues of the Sturm–Liouville operatorΛ̂a
b = −δab(d2/dτ2)

−Λ̂a
bû

b
n + λ̂nû

a
n = 0 (2.23)

with the boundary conditions of the eigenfunction

ûan(τ1) = ûan(τ2) = 0 (2.24)

for a free particle with the same constant energy E as that of the particle in a conservative
physical system, andẐ(τ2, τ1) is the corresponding partition function.

Proof. We relate the geodesic of the particle with constant energyE in a conservative
physical system to that of a free particle with the same energyE. Recalling that the Jacobian
J remains unchanged[16,19]for the unitary transformation{uan(τ)} → {ûan(τ)}, in the limit
V → 0, (2.1)yields the free particle metric

ĝij = 1
2mEδij , (2.25)

and(2.18)produces the partition function

Ẑ(τ2, τ1) = J eiŜcl eiπ
∑

n signλ̂n/4
∞∏
n=1

∣∣∣∣2π
λ̂n

∣∣∣∣
1/2

, (2.26)

and the eigenvalue equations of the Sturm–Liouville operatorΛ̂a
b = −δab(d2/dτ2) can be

described in terms of their component form

−Λ̂i
jû

j
n + λ̂nû

i
n = d2ûin

dτ2
+ λ̂nû

i
n = 0

with

ûin(τ1) = ûin(τ2) = 0, i = 1,2,3.

Combination of(2.18) and (2.26)yields the partition function(2.22). �

3. Jacobi fields and partition functions

Now we consider the Jacobi equation to express the absolute value of the ratio in(2.22)
in terms of the initial data at the starting pointp = xi(τ1), by introducing a smooth
one-parameter family of geodesicsγn(τ) on the manifoldM. Here one can vary the pa-
rameterα ∈ R by infinitesimally changing the direction of the initial velocityvi(τ1) =
(dxi/dτ)(τ1) at p, and also one can chooseα andτ as coordinates of a submanifoldΣγ

spanned by the geodesicsγα(τ) onM. Along the geodesicγ0, one can have tangent vector
fieldsva and deviation vector fieldwa which points to an infinitesimally nearby geodesic
and vanishes atp, namely,wa(τ1) = 0, so that one can have the relative acceleration of the
displacement to an infinitesimally nearby geodesic

aa = vc∇c(v
b∇bw

a) = −Rabcdv
bvdwc. (3.1)
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Here note that, differently from(2.4) and (2.5), one can exploit the fact that all the curves
involved in aa are geodesics, so that one can use the identitywc∇c(v

b∇bv
a) = 0. The

relative acceleration(3.1) then yields the geodesic deviation equation

vc∇c(v
b∇bw

a)+ Rabcdv
bvdwc = 0, (3.2)

or its component form

d2wi

dτ2
+ Rikjlv

kvlwj = −Λi
jw

j = 0, (3.3)

which is also known as a Jacobi equation. Note that the solutionwa of (3.2) is named a
Jacobi field on the geodesicγ0 whose tangent isva.

Proposition 3.1. In the stationary phase approximation where the absolute value of the
deviation vector|wa(τ)| is infinitesimally small, the partition function for a particle in a
conservative physical system can be rewritten as

Z(τ2, τ1) = (2πi)−3/2 eiScl eiπ
∑

n(signλn−signλ̂n)/4
∣∣∣∣detĝij (τ1)

∂vj(τ1)

∂xk(τ2)

∣∣∣∣
1/2

, (3.4)

whereλ̂n are the eigenvalues of the Sturm–Liouville operatorΛ̂a
b = −δab(d2/dτ2) with the

boundary conditions of the eigenfunction, ûan(τ1) = ûan(τ2) = 0 for a free particle with the
same constant energy E as that of the particle in the conservative physical system.

Proof. Since the Jacobiequation (3.3)is a linear differential equation, the Jacobi fieldwi(τ)
depends linearly on the inertial datawi(τ1) and(dwi/dτ)(τ1) at the starting pointp to yield

wi(τ) = T ij(τ)
dwj

dτ
(τ1), (3.5)

where

T ij(τ1) = 0,
dT ij
dτ

(τ1) = δij, (3.6)

andT ij(τ) can be defined as

T ij(τ) = dxi(τ)

dvj(τ1)
. (3.7)

Here note that, since the coordinatesxi(τ) and the velocityvi(τ) = (dxi/dτ)(τ) are inde-
pendent variables at the same time, sayτ1, one can easily check that the definition(3.7)
satisfies(3.6). Substituting(3.5) into (3.3), one can rewrite the Jacobi equation in terms of
T ij as follows:

d2T ij

dτ2
+ Riklhv

kvhT lj = −Λi
kT

k
j = 0.
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Similarly, for the free particle one can obtain

d2T̂ ij

dτ2
= −Λ̂i

lT̂
l
j = 0, (3.8)

T̂ ij (τ1) = 0,
dT̂ ij
dτ

(τ1) = δij (3.9)

from which the ratio in(2.22)can be rewritten as[20]∣∣∣∣∣
∏

n λ̂n∏
n λn

∣∣∣∣∣ =
∣∣∣∣∣
detT̂ ij (τ2)

detT ij(τ2)

∣∣∣∣∣ . (3.10)

On the other hand, in order to evaluate explicitly the partition function for the free particle,
we introduce the expression forD[wa] [16,21]associated with the metric(2.25)

D[wa(τ)] =
N−1∏
n=0

[
det

(
ĝab

2πi3τ

)]1/2 N−1∏
n=0

dwan (3.11)

with 3τ = (τ2 − τ1)/N, wan = wa(τ1 + n3τ) and the boundary conditions

wa0 = wa(τ1) = 0, waN = wa(τ2) = 0.

Moreover,Ŝ(2)(wa) can then be rewritten as

Ŝ(2)(wa) =
∫ τ2

τ1

dτ
dwa

dτ
ĝab

dwb

dτ
= 1

3τ

N−1∑
n=0

(wan+1 − wan)ĝab(w
b
n+1 − wbn)

= 1

3τ

N−1∑
n=1

(2wanĝabw
b
n − wanĝabw

b
n+1 − wan+1ĝabw

b
n)

= 1

3τ

N−1∑
n=0

(wan − wcn+1h
ca
n )G

ab(wbn − hbd
n w

d
n+1), (3.12)

where the matricesGn andhn satisfy the following relations:

G1 = 2ĝ, Gn+1 + hnGnhn = 2ĝ, n = 1, . . . , N − 2,

Gnhn = hnGn = ĝ, n = 1, . . . , N − 1, (3.13)

which yield

hn = G−1
n ĝ, n = 1, . . . , N − 1,

Gn+1 + ĝG−1
n ĝ− 2ĝ = 0,

n = 1, . . . , N − 2. (3.14)

Now, consider a linear transformation,

zan = wan − hab
n w

b
n+1, n = 1, . . . , N − 1, (3.15)
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whose Jacobian is trivially given byJ(wa → za) = 1. Exploiting(3.11), (3.12) and (3.15),
we can evaluate the partition function for the free particle as follows:

Ẑ(τ2, τ1) =
∫ N−1∏

n=0

[
det

(
ĝ

2πi3τ

)]1/2 N−1∏
n=1

dzn ei(Ŝcl+(1/(23τ))
∑N−1

n=1 znGnzn)

= eiŜcl

N−1∏
n=0

[
det

(
ĝ

2πi3τ

)]1/2 N−1∏
n=1

∫
dzn e−(1/(2i3τ))znGnzn

= eiŜcl

N−1∏
n=0

[
det

(
ĝ

2πi3τ

)]1/2 N−1∏
n=1

[det(2πi3τ)detG−1
n ]1/2

= eiŜcl

[
det

(
ĝ

2πi

)]1/2

det

(
3τ

N−1∏
n=1

Gnĝ
−1

)−1
1/2

= (2πi)−3/2 eiŜcl

(
detĝ

detT̂N−1

)1/2

, (3.16)

where

T̂n = 3τG1ĝ
−1G2ĝ

−1 · · ·Gnĝ
−1, n = 1, . . . , N − 1,

T̂n+1 = T̂nGn+1ĝ
−1 = T̂n−1Gnĝ

−1Gn+1ĝ
−1, (3.17)

from which we have the identity

(T̂n+1 − T̂n)− (T̂n − T̂n−1) = 0. (3.18)

In the limit ofN → ∞, (3.13), (3.14) and (3.17)yield the initial conditions

T̂ ij (τ1) = 0,
dT̂ ij
dτ

(τ1) = δij,

which are the same as(3.9). Moreover, in the limit ofN → ∞, (3.18)can be now written
as the differential equation

d2T̂ ij

dτ2
= 0,

equivalent to(3.8), and the partition function(3.16)for the free particle yields

Ẑ(τ2, τ1) = (2πi)−3/2 eiŜcl

(
detĝij (τ1)

detT̂ ij (τ2)

)1/2

, (3.19)

where we have used the fact thatĝij is a constant independent ofτ.
Using the above results(3.10) and (3.19), the partition function(2.22)can be rewritten

as

Z(τ2, τ1) = (2πi)−3/2 eiScl eiπ
∑

n(signλn−signλ̂n)/4

∣∣∣∣∣detĝij (τ1)

detT ij(τ2)

∣∣∣∣∣
1/2

(3.20)
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to yield the partition function(3.4) for the particle in a conservative physical
system. �

Proposition 3.2. In the stationary phase approximation where the absolute value of the
deviation vector|wa(τ)| is infinitesimally small, the partition function for a particle in a
conservative physical system can be rewritten as

Z(τ2, τ1) = (2πi)−3/2 eiπ
∑

n(signλn−signλ̂n)/4 eiScl

∣∣∣∣det
∂2Scl

∂xi(τ1)∂xk(τ2)

∣∣∣∣
1/2

, (3.21)

whereλ̂n are the eigenvalues of the Sturm–Liouville operatorΛ̂a
b = −δab(d2/dτ2) with the

boundary conditions of the eigenfunction, ûan(τ1) = ûan(τ2) = 0, for a free particle with the
same constant energy E as that of the particle in a conservative physical system. Note that
the determinant involved here is known as the Van Vleck determinant[15].

Proof. Consider the Hamilton–Jacobi theory[22] where classical conjugate momentum
pcl
i (τ) corresponding toxi(τ) in the action(2.2) is given by

pcl
i (τ) = ∂Lcl

∂vi
= gijv

j, pcl
i (τ1) = ∂Scl

∂xi(τ1)

from which we obtain

ĝij (τ1) = ∂pcl
i (τ1)

∂vj(τ1)
,

∂vi(τ1)

∂xj(τ2)
= 1

ĝik(τ1)

∂pcl
k (τ1)

∂xj(τ2)
= 1

ĝik(τ1)

∂2Scl

∂xk(τ1)∂xj(τ2)

to, together with(2.15) and (3.4), yield the desired semiclassical partition function
(3.21). �

Remark 3.1. If there exist negative eigenvalues counted with their multiplicityN [8] of the
operatorΛa

b = −δab(d2/dτ2) − Racbdv
cvd in the eigenvalue equation−Λa

bu
b
n + λnu

a
n = 0,

the phase factor eiπ
∑

n(signλn−signλ̂n)/4 in the semiclassical partition function(3.21)yields
the phase factor e−iNπ/2.

Proof. Consider the eigenvalue equations of the Sturm–Liouville operatorΛ̂a
b = −δab

(d2/dτ2)

−Λ̂i
jû

j
n + λ̂nû

i
n = d2ûin

dτ2
+ λ̂nû

i
n = 0 (3.22)

with

ûin(τ1) = ûin(τ2) = 0, i = 1,2,3. (3.23)

The solution for the differentialequation (3.22)satisfying the boundary conditions(3.23)
can be written as

ûin(τ) = cin sinλ̂1/2
n (τ − τ1), n = 1,2, . . . , (3.24)
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where the eigenvalueŝλn is given by

λ̂n =
(

mnπ

τ2 − τ1

)2

, mn = 1,2, . . . , (3.25)

which show that sign̂λn is positive definite.
In the case of the positive eigenvalueλn of the operatorΛa

b = −δab(d2/dτ2)−Racbdv
cvd ,

there exists no phase difference since signλn − signλ̂n = 0. However, for each negative
eigenvalueλn, we have the phase difference signλn−signλ̂n = −2 to yield the phase factor

e−iπ/2. For the case ofN negative eigenvaluesλn, the phase factor eiπ
∑

n(signλn−signλ̂n)/4

yields the phase factor e−iNπ/2. �
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